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The temporal evolution of thermally driven flow in a shallow laterally heated cavity is 
studied for the nonlinear regime where the Rayleigh number R based on cavity height 
is of the same order of magnitude as the aspect ratio L (lengthlheight). The horizontal 
surfaces of the cavity are assumed to be thermally insulating. For a certain class of 
initial conditions the evolution is found to occur over two non-dimensional timescales, 
of order one and of order L2. Analytical solutions for the motion throughout most of 
the cavity are found for each of these timescales and numerical solutions are obtained 
for the nonlinear time-dependent motion in end regions near each lateral wall. This 
provides a complete picture of the evolution of the steady-state flow in the cavity for 
cases where instability in the form of multicellular convection does not occur. The final 
steady state evolves on a dimensional timescale proportional to 1 2 / K ,  where 1 is the 
length of the cavity, K is the thermal diffusivity of the fluid and the constant of 
proportionality depends on the ratio R/L. 

1. Introduction 
Flows driven by lateral heating in shallow rectangular cavities are of interest in 

relation to a number of physical and technological phenomena such as the production 
of crystals by the gradient freeze technique (Hurle, Jakeman & Johnson 1974), cooling 
systems for nuclear reactors (Boyack & Kearney 1972), solar energy collectors (Bejan 
& Rossie 1981) and the dispersion of pollutants in river estuaries (Cormack, Leal & 
Imberger 1974). In many instances the temporal evolution of the flow is of interest, 
particularly where this occurs over a long timescale, due either to the large lateral 
extent of the system or, in a geophysical context, to seasonal or other periodic 
variations. 

Steady two-dimensional flow structures due to lateral heating in shallow rectangular 
cavities are now fairly well understood, particularly in the linear and mildly nonlinear 
regimes. In the Oberbeck-Boussinesq approximation the flow depends on three non- 
dimensional parameters: a Rayleigh number R, based on the cavity height and the 
lateral temperature difference, the Prandtl number of the fluid cr, and the aspect ratio 
of the cavity L (length/height), which here is assumed large. For Rayleigh numbers 
R < L the flow throughout the cavity consists of a Hadley cell driven by the constant 
horizontal temperature gradient set up between the endwalls (Cormack et al. 1974). 
Nonlinear convective effects first become significant in the turning motion near the 
ends when 

R, = R/L = 0(1) (1.1) 

(Hart 1983a; Daniels, Blythe & Simpkins 1987). In the same range the single Hadley 
cell becomes susceptible to a variety of instabilities (Hart 1972, 1983b) and above 
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certain critical values of R, the parallel core flow is replaced by multiple cells. The 
stationary transverse mode of instability actually forms an integral part of the basic 
steady motion in the cavity but is limited to Prandtl numbers less than about 0.12 
(Daniels et al. 1987). Longitudinal stationary and travelling wave instabilities and 
transverse travelling waves are also possible and become the preferred modes of 
instability for Prandtl numbers greater than about 0.033 but even at moderate Prandtl 
numbers are limited to extremely high values of R, (Kuo & Korpela 1988) and may be 
discounted as far as the present investigation is concerned. Here attention is restricted 
to two-dimensional flow and multicellular motion is not expected to be significant 
provided (T 2 0.12. Numerical solutions of the Boussinesq equations governing the 
nonlinear steady-state turning motion in the end regions have been obtained for low 
Prandtl numbers by Hart (1983a) and for a wider range of Prandtl numbers and for 
Rayleigh numbers R, up to 20000 by Wang & Daniels (1993). The asymptotic structure 
of the steady-state solution as R, + co has been discussed by Daniels (1993). 

One of the first rational investigations of transient flow in a rectangular cavity was 
carried out by Patterson & Imberger (1980) who identified many of the important 
length, time and velocity scales of the motion, allowing a classification of the various 
possible flow regimes. A number of interesting features were revealed, including an 
oscillatory approach to steady state under certain conditions. This oscillatory 
behaviour has since been confirmed in experiments by Ivey (1984) and Patterson & 
Armfield (1990) and in numerical simulations by Schladow, Patterson & Street (1989). 
Much of this work has been concerned with cavities of finite aspect ratio and there 
appears to have been comparatively little work on the time evolution of flows in 
shallow cavities where L $- 1. The value of analysing the asymptotic structure of the 
solution in this limit, as opposed to performing numerical simulations at finite values 
of L, lies not only in its relevance to the applications mentioned earlier but also in the 
possibility of obtaining approximate but general solutions over a wide range of 
parameter space and thereby developing a more complete understanding. 

The present study investigates such time-dependent flows analytically and 
numerically for a cavity with thermally insulated horizontal surfaces and endwalls held 
at different fixed temperatures. The problem is formulated in $2. The fluid is assumed 
to be initially at rest with a linear, conductive temperature profile across the cavity for 
which R, = O(1). In the absence of instabilities, the evolution of the flow is found to 
occur on two main non-dimensional timescales. The main core flow develops on a 
timescale t = O(1) and is discussed in $3. A more complicated motion is generated in 
roughly square zones near each end of the cavity and the solution there is discussed in 
$4, with particular emphasis on the structure that emerges as t+ co. Numerical 
solutions of the full Boussinesq equations which govern the end region flow are 
obtained using a Dufort-Frankel multigrid method and are described in $5 .  The end- 
zone behaviour as t + 00 in turn creates a reaction in the core region which then adjusts 
on a long timescale t = O(L2) which is considered in $6. This ultimately leads to the 
attainment of a steady-state solution throughout the cavity. A discussion of the results 
and extensions of the theory to incorporate more general initial configurations are 
given in $7. 

2. Formulation 
A cavity of length 1 and height h occupies the region 0 d x d L, 0 d z d 1, where 

(x, z )  are Cartesian coordinates non-dimensionalized with respect to h. The cavity is 
filled with a fluid of kinematic viscosity v, thermal diffusivity K and coefficient of 
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thermal expansion 01. The endwall at x = L = l /h  is maintained at a constant 
temperature A T  in excess of that at x = 0 and the two horizontal walls z = 0 and 
z = 1 are perfectly insulated. In the Oberbeck-Boussinesq approximation, time- 
dependent motion is governed by the equations 

aii am -+- = 0: 
ax a Z  

for the velocity field (u, W), reduced pressure p and temperature T, which are non- 
dimensionalized with respect to K/h, puK/h2 and A T  respectively, where p is the mean 
density of the fluid. The time t is non-dimensionalized with respect to h 2 / K ,  and the 
Rayleigh number R and Prandtl number v are defined by 

R = ugATh3/Kv, B = U / K ,  (2.5) 

where g is the acceleration due to gravity. The boundary conditions on the rigid walls 
of the cavity are - - 

$ = w = T = O  ( x  = 01, (2.6) 
- 
?++= W = O ,  T =  1 ( x =  L), 

?++ = u = aT/az = o ( z  = o , q ,  
- 

where $ is a stream function defined by 

u = a$/az, w = - a$/ax. (2.9) 

T = x / L ,  $ = u = w = O  at t = O  (2.10) 

In $93-6 the evolution of the flow from an initial state 
- ~ 

is considered. Because this state is centrosymmetric (Gill 1966) the time-dependent 
motion that ensues can also be assumed centrosymmetric : 

(2.11) 
(2.12) 

P(x,z, t )  = R(z-;)+p(L-x, 1 -z ,  t),  (2.13) 

allowing only one half of the flow domain to be considered. It will also be assumed that 
the Rayleigh number and aspect ratio are such that R, = R / L  = 0(1), giving rise to a 
nonlinear motion in the end regions of the cavity. 

The initial state (2.10) corresponds to a motionless fluid subjected to a linear lateral 
temperature variation consistent with the temperatures of the endwalls at x = 0 and 
x = L. This conductive state might arise following a sudden increase in the Rayleigh 
number or as a result of differential thermal radiation of the fluid layer. It could also 
be produced by internal heating or by thermal conduction on an order-one timescale 
following differential heating along the horizontal surface of the cavity. The latter 

T(x,z, t )  = 1 - T(L-x, 1 - z ,  t),  

$(x, z, t )  = $(L-x, 1 - z ,  t ) ,  
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would also produce transient motion that would modify the evolution of the flow on 
a timescale t = O(l), to be considered in $53-5 below, but would not affect the 
subsequent long-timescale evolution when t = O(L2) to be described in 9 6. Extensions 
of the present theory to include a wider class of initial configurations are considered in 
§7. 

3. Core region 

variables 

and in this section the solution is considered for times t = O(1). In the limit as L+ co 
it is found that the solution proceeds in inverse powers of L :  

In the core region away from the endwalls it is appropriate to use as independent 

5 = x / L ,  z = z (3.1) 

7'= &-+ L-lf((g,z, t )+.  . . )  

q = &(& z, t )  + . . . , 
u = 21(&-, 2, t )  + . . . , 
p = L(z-;)+p"(&-, Z,  t )+.  . . , 

(3.2) 

with the leading terms in the temperature and pressure reflecting the fact that the initial 
thermal field is given by (2.10) and that the solution is centrosymmetric. Substitution 

to be solved subject to the boundary conditions 

and the initial conditions 

- 
22 = aT/?Z = 0 (Z = 0 , l )  

- 
i i=T=O ( t = O ) .  

The solution for u" is readily obtained as 

from which it follows that 
& = R, F(z, t ) ,  

where 
m e-4n2a2ut 

F(z, t )  = 4 2 )  + c ___ (cos 2nnz - 1) 
n=l 8n47c4 

and F(z) = #(1 -z)2 

Equation (3.5) can now be solved to obtain 

f = R, G(z, t),  

(3.3) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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Here 
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G(z, t )  = G(Z) + c (G,(z) e-4n2n2nt +g, e-nzn2t cos nnz). 
m 

a=l 

G(z) = &z5 - &z4 + &z3 - &, 

and g ,  = 0 for even values of n and is given by 

1 1 1  

(3.13) 

(3.14) 

(3.15) 

(3.16) 

for odd values of n. The Prandtl-number dependence contained within the two results 
(3.1 5 )  and (3.16) is worthy of comment. The component of ?associated with a typical 
mode G, and generated by the transient part of the velocity field remains finite at 
cr = 1 but is singular whenever the Prandtl number is equal to M 2 / 4 N 2  for any integer 
M a  1 ,  generating a corresponding singularity in the complementary part of 
associated with g,. This resonance occurs when the temporal decay of the thermal field 
forced by 6 coincides with one of the natural modes of thermal decay. As CT+ M 2 / 4 N 2  
the two terms involving G, and g, in (3.13) combine to produce a solution 
that remains finite at a = M 2 / 4 N 2  but that contains a term proportional to 
t exp (- M2n2t)  cos Mnz. This is the dominant part of the transient decay of only 
when a = and M = N = 1 .  The pressure field can be determined from (3.4) in a 
straightforward manner. 

It is interesting to note that the core solution found here is actually a special case, 
corresponding to the choice C = 1 ,  of a family of exact solutions of (2.1F(2.4) obtained 
by writing u = Cu"(z, t) ,  w = 0 and T = (Cx+ C2F(z,  t ) ) /L ,  where u" and ?satisfy (3.3) 
and (3.5). The main results (3.8), (3.9) and (3.12) indicate that the lateral temperature 
variation induces a parallel flow which increases in strength with time, reaching a 
steady state associated with the function F(z) as t+ co. This flow is towards the cold 
endwall in the top half of the cavity and towards the hot wall in the bottom half. The 
fluid motion in turn generates a vertical temperature variation throughout the core 
region which reaches a steady-state form associated with the function G(z) as t+ co. 
In general the timescale on which this steady-state motion is achieved increases as the 
Prandtl number decreases, being proportional to CT-' as g + O .  For low Prandtl 
numbers, any transient motion associated with setting up the initial conductive state 
(2.10) in the manner described in $2 would modify the solution when t = O(1) but 
would not affect the evolution of the flow on the longer timescale t = O ( c l ) .  

In the early stages of the motion, as the fluid accelerates from rest, the velocity field 

22 - aR, t($-z), t-0, (3.17) is given by 

with slip velocities of order t induced near the upper and lower boundaries. Near the 
lower boundary 

where 5 = z/ (at) i  and 

The required solution 

u" - CTR' t f (9 ,  t -0 ,  

from (3.3) and (3.6), 

1 f"+'gLf = -1. 
2 2 ,  

(3.18) 

(3.19) 

(3.20) 
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where U is the parabolic cylinder function defined by Abramowitz & Stegun (1965, p. 
686). An equal and opposite flow occurs near the upper surface of the cavity at small 
times. 

The time-dependent core solution (3.2) does not satisfy the boundary conditions at 
the endwalls of the cavity, where the flow is turned. The nature of the flow near each 
lateral boundary is considered in the next two sections. 

4. Endzone 
The solution in the end zone at the cold wall can be expanded as 

T = L-lT(x,z ,  t )+.  . . 
$T = $(x, z ,  t )  + . . . ] (L-tCQ), (4.1) 

and elimination of the pressure in (2,l)-(2.4) shows that the flow is governed by the full 
time-dependent Boussinesq system 

$ = = @ / a x =  T=O on x = O ,  
$ = a$/az = aT/az = 0 on z = 0, l .  

The solution must also match with that in the core, requiring that 

and must satisfy the initial conditions 

T = x ,  @ = O  at t = 0 .  

Computational solutions of this nonlinear system are described in $5. Here the 
structure of the solution is considered for large times and it is shown that the end zone 
develops two distinct parts, an inner region x - 1 where a steady-state solution evolves 
and an outer region x - ti where the flow remains time dependent as t + 00. 

In the inner region it is anticipated that 

$+$s(x,z), T+T,(x,z) as t+a, (4.8) 

$ s + R I F ( ~ ) ,  T , -x+c+R,G(z) ,  X + O O ,  (4.9) 

where $s and T, are steady-state solutions of (4.2)-(4.5) such that 

where c = c(R,, (T) is a constant whose value depends only on R, and v, and F and G 
are the steady-state limiting forms of P and G", as given by (3.1 1) and (3.14). Here it is 
assumed that the values of (T and R, exclude the possibility of multicellular convection 
of the type described in the Introduction. Numerical solutions for $, and T, and the 
corresponding values of c, which are determined as an integral part of the solution, 
have been obtained for a range of values of (T and R, by Wang & Daniels (1993). Since 
c is non-zero, the behaviour (4.9) is not consistent with the form of the outer boundary 
condition (4.6) for large times, 

(4.10) T - x + R, G(z), $ + R, F(z). 
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The necessary adjustment occurs in an outer region where the lateral diffusion of heat 
is significant, allowing the form (4.10) to be attained as x / t i +  00. 

In the outer region the solution can be expanded for large times in the form 

where 7 = x/&.  Substitution into (4.2), (4.3) gives, at order one, 
F"" = 1, R, G + a 2 q / a Z 2  = R, F'. (4.12) 

This implies that a2T,/az2 = 0, and since i3T,/az = 0 at z = 0 and z = 1 it follows that 

T, = T,(7). (4.13) 

At order t-1, and are found to satisfy 

(4.14) 

with (4.15) 

so that (4.16) 

(4.17) 

where is an unknown function of 7. 
At order t-l, T ,  is found to satisfy 

with @2 = a@,/az = a q / a Z  = o at z = 0,1. (4.19) 

Substitution for and T from (4.16), (4.17) and integration from z = 0 to z = 1 using 
(4.15) and (4.19) shows that T, satisfies the equation 

where Q, = G"dz = 11362880. 1: 
(4.20) 

(4.21) 

The solution for T, must match with the inner behaviour (4.9) as 7 + 0, requiring that 

q = c  at 7 = 0  (4.22) 

and must be consistent with the outer behaviour (4.10) as 7 +  a, equivalent to the 
requirement that &-to as 7-tco. (4.23) 

The relevant solution is therefore 

T, = cerfc(7/2(1+3R~QO)~). (4.24) 

Thus the end zone spreads into the core on the scale x - ti as t+ co, eventually 
modifying the solution outlined in $3. In order for the flow and heat transfer to achieve 
a steady-state form near each lateral wall the core temperature must rise by an amount 
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cL-l near the cold wall and fall by the same amount near the hot wall. Because of the 
large lateral scale of the cavity this leads to an adjustment of the temperature field 
across the entire core over a long timescale t = O(L2), to be considered in 96. 

5. Numerical solution of the end-zone problem 
Numerical solutions of the end-zone problem (4.2)-(4.7) were undertaken to confirm 

the behaviour outlined in $4. These were based on the use of a Dufort-Frankel 
multigrid method previously used to obtain steady-state solutions of the end-zone 
problem (Wang & Daniels 1993). This explicit finite-difference method has second- 
order accuracy and uses the three-level Dufort-Frankel scheme (Roache 1976) to 
advance the temperature and vorticity fields and a multilevel method (Brandt 1977) to 
solve Poisson's equation for the stream function. An iterative method is used on the 
first time step and this allows the three-level scheme to be implemented on the second 
and subsequent time steps. The size of the time step is limited by a Courant condition 
and a uniform spatial mesh is used with an outer boundary at x = x, ,  where the outer 
behaviour (4.6) is applied in the form 

aTlax = 1, + = R,&, t). (5.1) 

A large value of x ,  is needed to accommodate the outward spread of the solution with 
time and, in the computations reported here, x ,  was chosen as 60. Further details of 
the numerical scheme are given by Wang (1992). 

Contours of temperature, vorticity and stream function are shown in figures 1 4  for 
R, = 500, CT = 0.733 and various times up to t = 50. The temperature field starts from 
the linear form T = x at t = 0 and gradually develops the vertical gradient associated 
with the anticipated form at large times. The fluid velocity increases in amplitude, 
driven by the lateral temperature gradient, and the position of maximum stream 
function moves from the core region to a position near the wall as t + co. Eventually 
the solution near the wall attains the steady-state form previously reported by Wang 
& Daniels (1993). However, farther from the wall, the solution continues to change 
with time, as shown by profiles of T - x  on the centreline z = for successive times in 
figure 5.  Near the wall the observed maximum is associated with the behaviour 

T - x  N c (1 < x < ti), (5.2) 

the solution approaching the value c(R,, CT) = c(500,0.733) z 0.28 as t - t  co. At large 
distances the solution approximates the form given by (4.24). A rough estimate of the 
decay of the complementary error function suggests that the outer behaviour is reached 
close to where its argument is 2, equivalent to 

x N 4P( 1 + 3 R; Q,):. (5.3) 

For R, = 500 this gives x N 7.0&, which is in good agreement with the computed 
solution shown in figure 5.  As t increases, the numerical solution can in fact no longer 
be accommodated without increasing x ,  beyond 60, leading to spurious behaviour in 
the region x 3 40. 

6. Long-timescale evolution 
As the two end zones spread into the core, the solution there is modified when the 

lateral scale (5.3) is comparable with the cavity width L,  which occurs when t = O(L2). 
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FIGURE I .  Contours of (a) temperature, (b)  vorticity, (c)  stream function, at intervals 0.5,2.5 and 0.03 
respectively, in the end zone for R, = 500 and cr = 0.733 at t = 0.005 using a 750 x 12 computational 
grid. Only the region 0 < x < 4, 0 < z < 1 is shown. 

L 

t. 

I 

f 

FIGURE 2. Contours of (a) temperature, (b) vorticity, (c) stream function, at intervals 0.5, 5 and 
0.1 respectively, in the end zone for R, = 500 and = 0.733 at t = 0.2. 
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FIGURE 3. Contours of (a)  temperature, (b) vorticity, ( c )  stream function, at intervals 0.5, 5 and 
0.1 respectively, in the end zone for R, = 500 and D = 0.733 at t = 5. 

FIGURE 4. Contours of (a) temperature, (b) vorticity, (c) stream function, at intervals 0.5, 5 and 
0.1 respectively, in the end zone for R,  = 500 and D = 0.733 at t = 50. 
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0.2 

( T-x), = i 

0.1 

FIGURE 5.  The function T - x  at z = a within the end zone for R, = 500, cr = 0.733 
and various times. 

In order to determine the solution in the core on this long timescale, the solution there 
is expanded in the form 

where [ = x / L  and 7 = t /L2 .  From (2.1)-(2.4) the governing equations and boundary 
conditions can be written in a form identical to (4.2), (4.3) and (4.5) but with $, T and 
R, replaced by $, T and R, L respectively. Substitution of (6.1) then leads to the 
following results. 

At order one, F "  = 1 with F = F = 0 on z = 0,1, consistent with the solution for 
F given by (3.1 1). At order L-I, 

with = i3gI/az = a Z / a z  = 0 on z = 0 , l .  The relevant solutions are 

$1 = 4 F(z) W a f ,  
T,  = R, G(z)  + A([ ,  71, 

where G is given by (3.14) and A([ ,7 )  is an unknown function of [ and 7. 

At order L-', i', is found to satisfy 
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and since aT,/az = 0 on z = 0,1, this gives 
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T,  = 2R, G(z) aT,/a[+ B([, r), 

where B([,r) is an unknown function of 6 and r. 
At order LP3, is found to satisfy 

with aZ/az  = 0 on z = 0, l .  Substitution of (6.3), (6.4) and (6.6) into (6.7) and 
integration from z = 0 to z = 1 yields an equation for A(( ,  r ) :  

where Q, is given by (4.21). 
The solution for T,  must match with that in each end zone, where the relevant 

leading-order solution on the long timescale t = O(L2) is the steady-state solution 
associated with the inner forms $c.s(x,z) and T,(x,z) given by (4.8). Thus 

A(0,r) = c (6.9) 

and similarly for the other end of the cavity 

A(1,r) = - c .  (6.10) 

As r+O the solution must match with that given by (3.2) as t+ co, which requires 

A([,O) = 0, 0 < < 1. 
The solution for A is 

(6.11) 

(6.12) 

where Q = 1 + 3R; Q,. In summary, the core solution for r > 0 takes the form 

(6.13) 

2c 
n=l nn 

R, G(z) + c( 1 - 2 8  - C - e-4n2rr2Q7 sin 211x6 

co 

$ = R, F(z) - 2L-lR, F(z) c e - 4 n 2 1 r 2 Q T ~ ~ ~  2nn5 

As r + 00, this solution approaches the steady-state form previously identified by 
Daniels et al. (1987). The effect of the lateral boundaries is to produce a reaction in the 
core region which, as 7 increases, reduces the lateral temperature gradient from 
aT/ax - L-l to L-l(1-2cL-l). The horizontal flow across the core is reduced by a 
similar factor. 

7. Discussion 

form 
The preceding theory can be extended to a more general class of initial profiles of the 

T =  1----+-, $ = O  at t = 0 ,  
- ( 21L - 

(7.1) 
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FIGURE 6. Contours of (a) temperature, (b) vorticity, (c) stream function, at intervals 0.5,2.5 and 0.03 
respectively, in the end zone for R, = 500, CT = 0.733 and a = 1 at t = 0.01, using a 750 x 12 
computational grid. 

FIGURE 7. Contours of (a) temperature, (b) vorticity, (c) stream function, at intervals 0.5, 5 and 
0.05 respectively, in the end zone for R, = 500, CT = 0.733 and a = 1 at t = 0.02. 
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FIGURE 8. Contours of (a) temperature, (b) vorticity, (c) stream function, at intervals 0.5, 5 and 
0.1 respectively, in the end zone for R, = 500, u = 0.733 and a = 1 at t = 0.5. 

FIGURE 9. Contours of (a) temperature, (b) vorticity, (c) stream function, at intervals 0.5, 5 and 0.05 
respectively, in the end zone for R, = 500, u = 0.733 and a = 4 at t = 0.005, using a 750 x 12 
computational grid. 
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FIGURE 10. The vertical velocity, w, in the end zone at z = 0.3 and t = 0.005 for R,  = 500, 
u = 0.733 and initial conditions corresponding to a = 0, 1 and 4. 

4 

I I I 

20 40 60 
X 

FIGURE 11. The function T-x at z = + within the end zone for R, = 500, u = 0.733 and various 
times, with the initial condition corresponding to a = 1. 

where a is a finite constant. The case a = 0 corresponds to the situation considered in 
§$2-6, while increasing values of a correspond to a weaker initial temperature gradient 
with a jump in temperature at t = 0 at each endwall. In such cases the initial evolution 
is less gradual and indeed the case a = L would correspond to starting from a uniform 
temperature T =  + throughout the cavity with the motion generated by the sudden 
change in temperature to T = 0 and T = 1 at the endwalls. This leads to initial motions 
near the ends which for large values of a take the form of wall jets generated by the 
sudden heating. Provided a is finite the preceding analysis can easily be extended to 
incorporate such effects. The core solution for t = O(1) becomes 

T = 6 + ~ - l ( ; a  - a t  + R, G(z, t ) )  + o(L-~),  1 
3 = R,(I - aL-l) F(z, t )  + o(L-~),  

where G" and Pare the functions defined in (3.10) and (3.13). This is a straightforward 

( 7 4  J 
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generalization of the previous solution which for a > 0 is modified by the slightly 
reduced lateral temperature gradient and horizontal flow associated with the new 
initial profile. For t = O(L2) this simply provides a new initial profile for the amplitude 
function A ,  resulting in a core solution for 7 > 0 

(7.3) 

00 

RlG(z)+c(l-21J+ - 
n=, nn: 

00 

3 = R, F(z) - 2L-1 R, F(z) c + (2c - a) C. e-4n2n2QT 
n=l 

which approaches the previous steady-state solution as 7 --f 00. 
There is some interest, however, in the manner in which the end-zone flow develops, 

particularly for large values of a. The end-zone problem for t = O(1) is as stated in 
(4.2)-(4.7) except that the initial profile is now 

T = x + f a ,  $ = O  at t = O  (7.4) 

and the outer condition (4.6) is replaced by 

Numerical solutions of this problem were obtained for a = 1 and a = 4 with R, = 500 
and cr = 0.733. Figures 6 8  show contours of the temperature, vorticity and stream 
function at several times, for a = 1. During the early stages of the motion the flow 
contains stronger horizontal gradients near the wall than in the case a = 0 but the 
additional effect weakens rapidly as time progresses. For higher values of a the endwall 
effect is more pronounced. In figure 9, for a = 4, the contours indicate a strong 
nonlinearity near the wall, with a local circulation generated by the sudden heating at 
t = 0. This is clearly shown in figure 10 by profiles of the vertical velocity w near the 
wall for different values of a, indicating a jet-like motion for a = 4. 

Figure 11 shows how the new initial profile with a = 1 affects the evolution of T -  x 
along the centreline of the end zone, in contrast to the result obtained for a = 0 
in figure 5.  For x % ti 9 1, T - x  must now approach the value fa = + while for 
1 4 x 4 ti the plateau value c M 0.28 must emerge as t + 00. This is consistent with the 
behaviour observed in figure 11. The outer section where x - ti eventually develops 
into part of the core solution on the long timescale t = O(L2) which then adjusts to the 
steady-state form - c+ L-%( 1 - 2 9  on z = f ,  independent of a, when 7 = L-2t % 1. 

In the present paper, the evolution of thermally driven shallow cavity flows from a 
motionless state has been considered for Rayleigh numbers, R, of the same order of 
magnitude as the aspect ratio. For the class of initial temperature profiles considered 
here, the evolution consists of two main stages: an initial stage in which the main fluid 
circulation is established in both the core and end regions of the cavity, and a second 
stage in which the core motion and temperature field are finely adjusted by the reaction 
produced within each end zone. The long timescale on which the steady state finally 
evolves has an e-folding value 7 = 1/47c2(1 + 3R: Q,), equivalent to a dimensional 
timescale 

(7.6) 

where R, = R/L,  Q, = 1/362880, I is the length of the cavity and K is the thermal 
diffusivity of the fluid. Thus for a laboratory experiment with water in a cavity of 

t* = 12/4x2~( 1 + 3 R,2 Q,), 
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length 1 = 100 cm, height h = 1 cm and subject to a temperature differential of 10 "C, 
the scaled Rayleigh number R, is approximately 923 and the timescale (7.6) is 6.25 
hours, indicating the substantial time needed to achieve a steady state. For flows 
evolving from a motionless state at uniform temperature, the results obtained for non- 
zero values of a give an indication of how the solution will develop. In particular, 
sudden heating near the lateral walls will produce jet-like motion there which will 
subsequently diffuse into the cavity as the main horizontal thermal gradient is 
established on a timescale t of order L2. The evolution in this case corresponds to 
setting a equal to L, which is outside the scope of the present asymptotic analysis, but 
it is hoped to consider such strongly nonlinear evolutions in future work. 
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